1. Academic Validation
  2. Therapeutic efficacy of an oral nucleoside analog of remdesivir against SARS-CoV-2 pathogenesis in mice

Therapeutic efficacy of an oral nucleoside analog of remdesivir against SARS-CoV-2 pathogenesis in mice

  • bioRxiv. 2021 Sep 17;2021.09.13.460111. doi: 10.1101/2021.09.13.460111.
Alexandra Schäfer 1 2 David R Martinez 1 2 John J Won 1 Fernando R Moreira 1 Ariane J Brown 1 Kendra L Gully 1 Rao Kalla 3 Kwon Chun 3 Venice Du Pont 3 Darius Babusis 3 Jennifer Tang 3 Eisuke Murakami 3 Raju Subramanian 3 Kimberly T Barrett 3 Blake J Bleier 3 Roy Bannister 3 Joy Y Feng 3 John P Bilello 3 Tomas Cihlar 3 Richard L Mackman 3 Stephanie A Montgomery 4 Ralph S Baric 1 Timothy P Sheahan 1
Affiliations

Affiliations

  • 1 Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  • 2 These authors contributed equally to this manuscript.
  • 3 Gilead Sciences, Inc, Foster City, CA, USA.
  • 4 Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
Abstract

The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from Infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal Antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved Viral Proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro Antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant Antiviral activity in lung cell lines and two different human primary lung Cell Culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent Antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog Antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.

Figures
Products