1. Metabolic Enzyme/Protease
    Neuronal Signaling
  2. Adenosine Kinase
  3. ABT-702 dihydrochloride

ABT-702 dihydrochloride 

Cat. No.: HY-103161 Purity: 98.03%
Handling Instructions

ABT-702 dihydrochloride is a potent adenosine kinase (AK) inhibitor (IC50=1.7 nM).

For research use only. We do not sell to patients.

ABT-702 dihydrochloride Chemical Structure

ABT-702 dihydrochloride Chemical Structure

CAS No. : 1188890-28-9

Size Price Stock Quantity
10 mM * 1 mL in DMSO USD 177 In-stock
Estimated Time of Arrival: December 31
5 mg USD 150 In-stock
Estimated Time of Arrival: December 31
10 mg USD 240 In-stock
Estimated Time of Arrival: December 31
50 mg USD 750 In-stock
Estimated Time of Arrival: December 31
100 mg USD 1100 In-stock
Estimated Time of Arrival: December 31
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

Customer Review

Based on 1 publication(s) in Google Scholar

Top Publications Citing Use of Products
  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review


ABT-702 dihydrochloride is a potent adenosine kinase (AK) inhibitor (IC50=1.7 nM).

IC50 & Target

IC50: 1.7 nM (Adenosine kinase, AK)[1]

In Vitro

ABT-702 is an orally effective adenosine kinase inhibitor that has several orders of magnitude selectivity over other sites of adenosine (ADO) interaction (A1, A2A, A3 receptors, ADO transporter, and ADO deaminase). ABT-702 is equipotent (IC50=1.5±0.3 nM) in inhibiting native human AK (placenta), two human recombinant isoforms (AKlong and AKshort), and AK from monkey, dog, rat, and mouse brain. ABT-702 potently inhibits the activity of rat brain cytosolic AK in a concentration-dependent manner with an IC50 value of 1.7 nM. ABT-702 also potently inhibits AK activity in intact cultured IMR-32 human neuroblastoma cells (IC50=51 nM), indicating that ABT-702 can penetrate the cell membrane and potently inhibit AK at its intracellular site[1].

In Vivo

ABT-702 significantly reduces acute thermal nociception in a dose-dependent manner after both intraperitoneal (ED50=8 μmol/kg i.p.) and oral (ED50=65 μmol/kg p.o.) administration in the mouse hot-plate test. Consistent with its antinociceptive effects in the hot-plate assay, ABT-702 also produces dose-dependent antinociceptive effects (ED50=2 μmol/kg i.p.) in the abdominal constriction assay. Like Morphine (21 μmol/kg i.p.), ABT-702 exhibits full efficacy in this model of persistent chemical pain[1]. Rats are given an intraperitoneal injection of the adenosine A1 receptor antagonist DPCPX (3 mg/kg), ABT-702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of 2-18F-fluorodeoxy-D-glucose (FDG) (FDG, 15.4±0.7 MBq per rat). Rats are then subjected to a 15 minute static positron emission tomography (PET) scan. Reconstructed images are normalized to FDG PET template for rats and standard uptake values (SUVs) are calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis is performed. Whole-brain FDG uptake is not affected by drug treatment. Significant regional hypometabolism is detected, particularly in cerebellum, of DPCPX and ABT-702 treated rats, relative to vehicle-treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. Body weight (316.8±28.4 g; mean±SD) and blood glucose (5.5±1.7 mM) are not significantly different among three groups. Whole-brain PET SUV values are 1.6±0.4, 1.6±0.6, and 1.8±0.6 for vehicle, ABT-702, and DPCPX-treated rats, respectively (F(2,9)=0.298, P=0.75). statistical parametric mapping (SPM) analysis reveals significant regional hypometabolism in the cerebellum, mesencephalic region, and medulla in the ABT-702-treated rats compared to the vehicle-treated rats[2].

Molecular Weight









Room temperature in continental US; may vary elsewhere.

Powder -20°C 3 years
  4°C 2 years
In solvent -80°C 6 months
  -20°C 1 month
Solvent & Solubility
In Vitro: 

DMSO : ≥ 33.33 mg/mL (62.15 mM)

*"≥" means soluble, but saturation unknown.

Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 1.8648 mL 9.3240 mL 18.6480 mL
5 mM 0.3730 mL 1.8648 mL 3.7296 mL
10 mM 0.1865 mL 0.9324 mL 1.8648 mL
*Please refer to the solubility information to select the appropriate solvent.
In Vivo:
  • 1.

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% saline

    Solubility: ≥ 2.5 mg/mL (4.66 mM); Clear solution

  • 2.

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in saline)

    Solubility: ≥ 2.5 mg/mL (4.66 mM); Clear solution

  • 3.

    Add each solvent one by one:  10% DMSO    90% corn oil

    Solubility: ≥ 2.5 mg/mL (4.66 mM); Clear solution

*All of the co-solvents are provided by MCE.
Animal Administration

Rats are fasted for 16 hours prior to use. At the beginning of the experiment, each rat is weighed, and then anesthetized using 5% isoflurane for induction and 2.5% for maintenance. A blood sample from tail vein is collected for a fasting blood glucose determination using a standard glucometer. Rats are then given an intraperitoneal (i.p.) injection of DPCPX (3 mg/kg, n=4), ABT-702 (3 mg/kg, n=4), or an equivalent volume of vehicle (15% dimethyl sulfoxide, 15% cremophor EL, 70% saline, n=4) to manipulate the effect of endogenous adenosine on neuronal activities. Ten minutes after i.p. injection, rats are administered FDG (15.4±0.7 MBq) in 0.3-0.5 mL saline by intravenous (i.v.) tail vein injection. Rats are allowed to recover from anesthesia after the FDG injection but are reanesthetized for 15-minute-static PET scan with the head in the center of the field of view. All images are reconstructed[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2


ABT-702ABT702ABT 702Adenosine KinaseADKInhibitorinhibitorinhibit

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product name



Applicant name *


Email address *

Phone number *


Organization name *

Country or Region *


Requested quantity *


Bulk Inquiry

Inquiry Information

Product name:
ABT-702 dihydrochloride
Cat. No.:
MCE Japan Authorized Agent: