1. Academic Validation
  2. G α Protein Signaling Bias at Serotonin 1A Receptor

G α Protein Signaling Bias at Serotonin 1A Receptor

  • Mol Pharmacol. 2023 Nov;104(5):230-238. doi: 10.1124/molpharm.123.000722.
Rana Alabdali 1 Luca Franchini 1 Cesare Orlandi 2
Affiliations

Affiliations

  • 1 Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY.
  • 2 Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY [email protected].
Abstract

Serotonin 1A receptor (5-HT1AR) is a clinically relevant target because of its involvement in several central and peripheral functions, including sleep, temperature homeostasis, processing of emotions, and response to stress. As a G protein coupled receptor (GPCR) activating numerous Gα i/o/z family members, 5-HT1AR can potentially modulate multiple intracellular signaling pathways in response to different therapeutics. Here, we applied a cell-based bioluminescence resonance energy transfer assay to quantify how ten structurally diverse 5-HT1AR agonists exert biased signaling by differentially stimulating Gα i/o/z family members. Our concentration-response analysis of the activation of each Gα i/o/z protein revealed unique potency and efficacy profiles of selected agonists when compared with the reference 5-hydroxytryptamine, serotonin. Overall, our analysis of signaling bias identified groups of ligands sharing comparable G protein activation selectivity and also drugs with unique selectivity profiles. We observed, for example, a strong bias of F-15599 toward the activation of Gα i3 that was unique among the agonists tested: we found a biased factor of +2.19 when comparing the activation of Gα i3 versus Gα i2 by F-15599, while it was -0.29 for 8-hydroxy-2-(di-n-propylamino) tetralin. Similarly, vortioxetine showed a biased factor of +1.06 for Gα z versus Gα oA, while it was -1.38 for vilazodone. Considering that alternative signaling pathways are regulated downstream of each Gα protein, our data suggest that the unique pharmacological properties of the tested agonists could result in multiple unrelated cellular outcomes. Further investigation is needed to reveal how this type of ligand bias could affect cellular responses and to illuminate the molecular mechanisms underlying therapeutic profile and side effects of each drug. SIGNIFICANCE STATEMENT: Serotonin 1a receptor (5-HT1AR) activates several members of the Gi/o/z protein family. Here, we examined ten structurally diverse and clinically relevant agonists acting on 5-HT1AR and identified distinctive bias patterns among G proteins. Considering the diversity of their intracellular effectors and signaling properties, this data reveal novel mechanisms underlying both therapeutic and undesirable effects.

Figures
Products