1. Membrane Transporter/Ion Channel
    Metabolic Enzyme/Protease
    Autophagy
  2. Potassium Channel
    Mitochondrial Metabolism
    Autophagy
    CFTR
    P-glycoprotein
  3. Glibenclamide

Glibenclamide (Synonyms: Glyburide)

Cat. No.: HY-15206 Purity: 99.79%
Handling Instructions

Glibenclamide (Glyburide) is an orally active ATP-sensitive K+ channel (KATP) inhibitor and can be used for the research of diabetes and obesity. Glibenclamide inhibits P-glycoprotein. Glibenclamide directly binds and blocks the SUR1 subunits of KATP and inhibits the cystic fibrosis transmembrane conductance regulator protein (CFTR). Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability. Glibenclamide can induce autophagy.

For research use only. We do not sell to patients.

Glibenclamide Chemical Structure

Glibenclamide Chemical Structure

CAS No. : 10238-21-8

Size Price Stock Quantity
Free Sample (0.5-1 mg)   Apply Now  
Solution
10 mM * 1 mL in DMSO USD 61 In-stock
Estimated Time of Arrival: December 31
Solid + Solvent
10 mM * 1 mL
ready for reconstitution
USD 61 In-stock
Estimated Time of Arrival: December 31
Solid
500 mg USD 55 In-stock
Estimated Time of Arrival: December 31
1 g USD 66 In-stock
Estimated Time of Arrival: December 31
5 g USD 92 In-stock
Estimated Time of Arrival: December 31
10 g   Get quote  
50 g   Get quote  

* Please select Quantity before adding items.

Customer Review

Based on 14 publication(s) in Google Scholar

Top Publications Citing Use of Products

    Glibenclamide purchased from MCE. Usage Cited in: Front Cell Dev Biol. 2020 May 12;8:269.

    The inhibition of HSP70 releasing by Glibenclamide suppresses morphine-induced ER stress and the phosphorylation of PKA and NR-1. Glibenclamide (200 μM) inhibits the decrease of intracellular HSP70 caused by morphine in SH-SY5Y cells.
    • Biological Activity

    • Purity & Documentation

    • References

    • Customer Review

    Description

    Glibenclamide (Glyburide) is an orally active ATP-sensitive K+ channel (KATP) inhibitor and can be used for the research of diabetes and obesity[1]. Glibenclamide inhibits P-glycoprotein. Glibenclamide directly binds and blocks the SUR1 subunits of KATP and inhibits the cystic fibrosis transmembrane conductance regulator protein (CFTR)[3]. Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability[4]. Glibenclamide can induce autophagy[5].

    IC50 & Target

    KATP[1]

    In Vitro

    Glibenclamide (Brown adipocytes; 10 μΜ; 1 day) has no effect on adipocyte differentiation. Glibenclamide (Ucp1-2A-GFP brown adipocyte) significantly increases UCP1 expression. Glibenclamide directly binds and blocks the SUR1 subunits of ATP-dependent potassium channels (KATP) and consequently increases insulin secretion from the pancreatic β cells[2]. Glibenclamide interferes with mitochondrial bioenergy by permeating mitochondrial intima with Cl- and promoting mitochondrial net Cl-/K+ cotransport[4]. Glibenclamide induced autophagy inhibits its insulin secretion-improving function in β cells[5].

    MCE has not independently confirmed the accuracy of these methods. They are for reference only.

    In Vivo

    Glibenclamide (2 mg/kg; p.o.) increases of insulin release and rapid drop of blood glucose level[2].
    Glibenclamide (50 μg/kg; p.o.) does not cause significant change, such as body weight or body composition[2].

    MCE has not independently confirmed the accuracy of these methods. They are for reference only.

    Animal Model: Mice[2]
    Dosage: 2 mg/kg
    Administration: P.o.
    Result: Increased of insulin release and rapid drop of blood glucose level.
    Clinical Trial
    Molecular Weight

    494.00

    Formula

    C23H28ClN3O5S

    CAS No.
    SMILES

    ClC1=CC(C(NCCC2=CC=C(S(NC(NC3CCCCC3)=O)(=O)=O)C=C2)=O)=C(OC)C=C1

    Shipping

    Room temperature in continental US; may vary elsewhere.

    Storage
    Powder -20°C 3 years
    4°C 2 years
    In solvent -80°C 6 months
    -20°C 1 month
    Solvent & Solubility
    In Vitro: 

    DMSO : 250 mg/mL (506.07 mM; Need ultrasonic)

    H2O : 0.1 mg/mL (0.20 mM; Need ultrasonic and warming)

    Preparing
    Stock Solutions
    Concentration Solvent Mass 1 mg 5 mg 10 mg
    1 mM 2.0243 mL 10.1215 mL 20.2429 mL
    5 mM 0.4049 mL 2.0243 mL 4.0486 mL
    10 mM 0.2024 mL 1.0121 mL 2.0243 mL
    *Please refer to the solubility information to select the appropriate solvent.
    In Vivo:
    • 1.

      Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% saline

      Solubility: ≥ 2.08 mg/mL (4.21 mM); Clear solution

    • 2.

      Add each solvent one by one:  10% DMSO    90% corn oil

      Solubility: ≥ 2.08 mg/mL (4.21 mM); Clear solution

    *All of the co-solvents are available by MCE.
    Purity & Documentation
    References
    • No file chosen (Maximum size is: 1024 Kb)
    • If you have published this work, please enter the PubMed ID.
    • Your name will appear on the site.
    • Molarity Calculator

    • Dilution Calculator

    The molarity calculator equation

    Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

    Mass   Concentration   Volume   Molecular Weight *
    = × ×

    The dilution calculator equation

    Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

    This equation is commonly abbreviated as: C1V1 = C2V2

    Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
    × = ×
    C1   V1   C2   V2

    Your Recently Viewed Products:

    Inquiry Online

    Your information is safe with us. * Required Fields.

    Product Name

     

    Salutation

    Applicant Name *

     

    Email address *

    Phone number *

     

    Organization name *

    Department *

     

    Requested quantity *

    Country or Region *

         

    Remarks

    Bulk Inquiry

    Inquiry Information

    Product Name:
    Glibenclamide
    Cat. No.:
    HY-15206
    Quantity:
    MCE Japan Authorized Agent: