1. Cell Cycle/DNA Damage Vitamin D Related/Nuclear Receptor Metabolic Enzyme/Protease
  2. PPAR
  3. GW1929

GW 1929 is an orally active peroxisome proliferator-activated receptor-γ (PPARγ) agonist with a pKi of 8.84 for human PPAR-γ, and pEC50s of 8.56 and 8.27 for human PPAR-γ and murine PPAR-γ, respectively. GW 1929 (hydrochloride) has antidiabetic efficacy and neuroprotective potential.

For research use only. We do not sell to patients.

GW1929 Chemical Structure

GW1929 Chemical Structure

CAS No. : 196808-24-9

Size Price Stock Quantity
Free Sample (0.1 - 0.5 mg)   Apply Now  
Solid + Solvent
10 mM * 1 mL in DMSO
ready for reconstitution
USD 95 In-stock
Solution
10 mM * 1 mL in DMSO USD 95 In-stock
Solid
5 mg USD 87 In-stock
10 mg USD 140 In-stock
25 mg USD 350 In-stock
50 mg USD 560 In-stock
100 mg   Get quote  
200 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 9 publication(s) in Google Scholar

Top Publications Citing Use of Products

    GW1929 purchased from MedChemExpress. Usage Cited in: Ecotoxicol Environ Saf. 2020 Sep 15;201:110801.  [Abstract]

    PPARγ agonist (GW 1929) effectively increased the PPARγ expression. Immunofluorescence staining analysis the expression levels of PPARγ in HK2 cells.

    GW1929 purchased from MedChemExpress. Usage Cited in: Ecotoxicol Environ Saf. 2020 Sep 15;201:110801.  [Abstract]

    PPARγ agonist (GW 1929) effectively increased the PPARγ expression. Western blotting analysis the expression levels of PPARγ in HK2 cells.

    GW1929 purchased from MedChemExpress. Usage Cited in: Biochim Biophys Acta Mol Basis Dis. 2018 Oct;1864(10):3322-3338.  [Abstract]

    LAZ3 knock-down decreases NRF2 expression and nuclear translocation, while only the PPARa agonist (GW7647) can prevent this inhibition. Both PPARγ agonist (GW1929) and PPARδ agonist (GW0742) can not reverse these inhibitions.

    View All PPAR Isoform Specific Products:

    • Biological Activity

    • Protocol

    • Purity & Documentation

    • References

    • Customer Review

    Description

    GW 1929 is an orally active peroxisome proliferator-activated receptor-γ (PPARγ) agonist with a pKi of 8.84 for human PPAR-γ, and pEC50s of 8.56 and 8.27 for human PPAR-γ and murine PPAR-γ, respectively. GW 1929 (hydrochloride) has antidiabetic efficacy and neuroprotective potential[1][2].

    IC50 & Target[1]

    PPAR-γ

    8.56 (pEC50, Human PPAR-γ)

    In Vitro

    GW1929 is a potent PPAR-γ activator, with pKis of 8.84, < 5.5, and < 6.5 for human PPAR-γ, PPAR-α, and PPAR-δ, and pEC50s of 8.56 and 8.27 for human PPAR-γ and murine PPAR-γ, respectively[1].
    GW1929 (10 μM) inhibits TBBPA-induced caspase-3 increase and TBBPA-stimulated LDH release in neocortical cell cultures[2].

    MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

    In Vivo

    GW1929 (0.5, 1, 5 mg/kg, p.o.) highly decreases nonfasted plasma glucose levels in Zucker diabetic fatty (ZDF) rats after treatment for 14 days, and possesses antilipolytic efficacy. GW1929 (1, 5 mg/kg, p.o.) increases glucose-stimulated insuline secretion of β-cell in ZDF rats[1].

    MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

    Molecular Weight

    495.57

    Formula

    C30H29N3O4

    CAS No.
    Appearance

    Solid

    Color

    Light yellow to yellow

    SMILES

    O=C(O)[C@H](CC1=CC=C(C=C1)OCCN(C)C2=NC=CC=C2)NC3=CC=CC=C3C(C4=CC=CC=C4)=O

    Shipping

    Room temperature in continental US; may vary elsewhere.

    Storage
    Powder -20°C 3 years
    4°C 2 years
    In solvent -80°C 2 years
    -20°C 1 year
    Solvent & Solubility
    In Vitro: 

    DMSO : ≥ 35 mg/mL (70.63 mM; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

    *"≥" means soluble, but saturation unknown.

    Preparing
    Stock Solutions
    Concentration Solvent Mass 1 mg 5 mg 10 mg
    1 mM 2.0179 mL 10.0894 mL 20.1788 mL
    5 mM 0.4036 mL 2.0179 mL 4.0358 mL
    View the Complete Stock Solution Preparation Table

    * Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
    Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year. When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

    • Molarity Calculator

    • Dilution Calculator

    Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

    Mass
    =
    Concentration
    ×
    Volume
    ×
    Molecular Weight *

    Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

    This equation is commonly abbreviated as: C1V1 = C2V2

    Concentration (start)

    C1

    ×
    Volume (start)

    V1

    =
    Concentration (final)

    C2

    ×
    Volume (final)

    V2

    In Vivo:

    Select the appropriate dissolution method based on your experimental animal and administration route.

    For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
    To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
    The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

    • Protocol 1

      Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

      Solubility: ≥ 2.5 mg/mL (5.04 mM); Clear solution

      This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

      Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

      Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
    • Protocol 2

      Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

      Solubility: ≥ 2.5 mg/mL (5.04 mM); Clear solution

      This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

      Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

      Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
    In Vivo Dissolution Calculator
    Please enter the basic information of animal experiments:

    Dosage

    mg/kg

    Animal weight
    (per animal)

    g

    Dosing volume
    (per animal)

    μL

    Number of animals

    Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
    Please enter your animal formula composition:
    %
    DMSO +
    +
    %
    Tween-80 +
    %
    Saline
    Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
    The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
    Calculation results:
    Working solution concentration: mg/mL
    Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).
    The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
    Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
     If the continuous dosing period exceeds half a month, please choose this protocol carefully.
    Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
    Purity & Documentation

    Purity: 99.87%

    References
    Kinase Assay
    [1]

    Ligand binding to bacterially expressed ligand binding domain (LBD) of hPPAR-γ is determined by scintillation proximity assay (SPA). The assay measures the ability of putative ligands to displace receptor bound [3H]BRL 49653. Assays are conducted in 96-well plates. Wells contained varying concentrations of GW1929 or troglitazone; streptavidin-modified SPA beads to which biotinylates PPAR-γ LBD is prebound; and 10 nM of the specific radioligand [3H]BRL 49653 in a volume of 100 μL. The amount of nonspecific binding, as assessed by control wells that contained 50 μM of the corresponding unlabeled ligand, is subtracted from each data point. For each compound tested, plots of ligand concentration versus counts/min of radioligand bound are constructed, and apparent Ki values are estimated from a nonlinear least squares fit of the data, assuming simple competitive binding. The results are expressed as pKi, where pKi = -log10(KI)[1].

    MCE has not independently confirmed the accuracy of these methods. They are for reference only.

    Cell Assay
    [2]

    For the experiments, the cells are plated in 96-well plates at a density 2 × 105 cells per cm2 and cultured in the presence of TBBPA, in a concentrations range from 1 nM to 100 μM TBBPA. TBBPA is dissolved in DMSO, resulting in a final vehicle concentration of 0.1 % (v/v). Control (no vehicle) and DMSO-treated wells are included in the experimental design to determine the effect of DMSO. To study whether PPAR-γ is involved in the neurotoxic effect of TBBPA, cells are co-treated with 10 μM TBBPA and 10 μM GW1929 or GW9662. After 6 or 24 h of culture, 100 μL medium is collected for the LDH analysis, and the cells are collected and frozen at −70°C for the caspase-3 activity measurements[2].

    MCE has not independently confirmed the accuracy of these methods. They are for reference only.

    Animal Administration
    [1]

    Animals are housed at 72°F and 50% relative humidity with a 12-h light and dark cycle, and fed Formulab Diet 5008. Age- (60-day) and glucose-matched male Zucker diabetic fatty rats are gavaged twice daily for 14 days with vehicle (0.05 M N-methylglucamine), GW1929 (0.5, 1.0, or 5.0 mg/kg), or troglitazone (as the milled extrudate, in a suspension in methylcellulose, 50, 150, and 500 mg/kg). Another group of animals receives a mixture of Humulin N and Humulin R by subcutaneous injection twice daily. On days 7 and 14 of dosing, nonfasted measurements of glucose, lactate, insuline, total cholesterol, TGs, F FAs, and hematocrit are obtained. On day 14 of dosing, samples for serum drug levels (2-h postdose) and glycosylated hemoglobin measurements are also collected. In addition, once weekly, three animals from each group are placed in metabolic chambers for 48 h for quantitation of 24-h food and water consumption. Body weights are recorded throughout the study. At the conclusion of the study, perfused pancreas experiments are performed on 12 animals (n = 4 per group) that have received either GW1929 (1 and 5 mg/kg) or vehicle, to directly evaluate the effects of treatment on basal and glucose-stimulated insuline secretion. The remaining animals are killed, and their pancreases are processed for immunocytochemistry[1].

    MCE has not independently confirmed the accuracy of these methods. They are for reference only.

    References

    Complete Stock Solution Preparation Table

    * Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
    Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year. When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

    Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
    DMSO 1 mM 2.0179 mL 10.0894 mL 20.1788 mL 50.4470 mL
    5 mM 0.4036 mL 2.0179 mL 4.0358 mL 10.0894 mL
    10 mM 0.2018 mL 1.0089 mL 2.0179 mL 5.0447 mL
    15 mM 0.1345 mL 0.6726 mL 1.3453 mL 3.3631 mL
    20 mM 0.1009 mL 0.5045 mL 1.0089 mL 2.5223 mL
    25 mM 0.0807 mL 0.4036 mL 0.8072 mL 2.0179 mL
    30 mM 0.0673 mL 0.3363 mL 0.6726 mL 1.6816 mL
    40 mM 0.0504 mL 0.2522 mL 0.5045 mL 1.2612 mL
    50 mM 0.0404 mL 0.2018 mL 0.4036 mL 1.0089 mL
    60 mM 0.0336 mL 0.1682 mL 0.3363 mL 0.8408 mL
    • No file chosen (Maximum size is: 1024 Kb)
    • If you have published this work, please enter the PubMed ID.
    • Your name will appear on the site.
    Help & FAQs
    • Do most proteins show cross-species activity?

      Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

    Your Recently Viewed Products:

    Inquiry Online

    Your information is safe with us. * Required Fields.

    Product Name

     

    Salutation

    Applicant Name *

     

    Email Address *

    Phone Number *

     

    Organization Name *

    Department *

     

    Requested quantity *

    Country or Region *

         

    Remarks

    Bulk Inquiry

    Inquiry Information

    Product Name:
    GW1929
    Cat. No.:
    HY-15655
    Quantity:
    MCE Japan Authorized Agent: