1. Signaling Pathways
  2. Apoptosis
  3. Caspase

Caspase

Caspase is a family of cysteine proteases that play essential roles in apoptosis (programmed cell death), necrosis, and inflammation. There are two types of apoptotic caspases: initiator (apical) caspases and effector (executioner) caspases. Initiator caspases (e.g., CASP2, CASP8, CASP9, and CASP10) cleave inactive pro-forms of effector caspases, thereby activating them. Effector caspases (e.g., CASP3, CASP6, CASP7) in turn cleave other protein substrates within the cell, to trigger the apoptotic process. The initiation of this cascade reaction is regulated by caspase inhibitors. CASP4 and CASP5, which are overexpressed in some cases of vitiligo and associated autoimmune diseases caused by NALP1 variants, are not currently classified as initiator or effector in MeSH, because they are inflammatory enzymes that, in concert with CASP1, are involved in T-cell maturation.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-P0109A
    Z-FA-FMK
    Inhibitor 99.14%
    Z-FA-FMK ((1S)-Z-FA-FMK) is a potent Cathepsin B and L inhibitor. Z-FA-FMK blocks the induction of DEVDase activity, DNA fragmentation, and externalization of phosphatidylserine by selective synthetic retinoid-related molecules (RRMs). Z-FA-FMK inhibits apoptosis. Z-FA-FMK inhibits caspase activity and selectively inhibits recombinant effector caspases 2, -3, -6, and -7. Z-FA-FMK is a viral inhibitor. Z-FA-FMK inhibits reovirus replication in a susceptible host.
    Z-FA-FMK
  • HY-N3584
    Paris saponin VII
    Inhibitor 99.96%
    Paris saponin VII (Chonglou Saponin VII) is a steroidal saponin isolated from the roots and rhizomes of Trillium tschonoskii. Paris saponin VII-induced apoptosis in K562/ADR cells is associated with Akt/MAPK and the inhibition of P-gp. Paris saponin VII attenuates mitochondrial membrane potential, increases the expression of apoptosis-related proteins, such as Bax and cytochrome c, and decreases the protein expression levels of Bcl-2, caspase-9, caspase-3, PARP-1, and p-Akt. Paris saponin VII induces a robust autophagy in K562/ADR cells and provides a biochemical basis in the treatment of leukemia.
    Paris saponin VII
  • HY-B0464
    Hydralazine hydrochloride
    99.66%
    Hydralazine hydrochloride is an antihypertensive agent. Hydralazine hydrochloride can inhibit mitochondrial fission and human peritoneal mesothelial cell proliferation. Hydralazine hydrochloride has immunomodulation and anti-migratory effect. Hydralazine hydrochloride activates the intrinsic pathway of apoptosis and causes DNA damage.
    Hydralazine hydrochloride
  • HY-13560
    AVN-944
    Activator 99.77%
    AVN-944 (VX-944) is an orally active, potent, selective, noncompetitive and specific inhibitor of IMPDH (inosine monophosphate dehydrogenase). AVN-944 is an essential rate-limiting enzyme in de novo guanine nucleotide synthesis. AVN-944 is also an inhibitor of arenavirus RNA synthesis, and blocks arenavirus infection. AVN-944 has broad anti-cancer activities, and can be used for multiple myeloma (MM) and acute myeloid leukemia (AML) research.
    AVN-944
  • HY-15586
    L67
    Activator ≥98.0%
    L67 (DNA Ligase Inhibitor) is a competitive DNA ligase inhibitor that effectively inhibits DNA ligases I/III (both IC50 are 10 μM). L67 (DNA Ligase Inhibitor) can cause nuclear DNA damage by reducing levels of mitochondrial DNA and increasing levels of mitochondrially-generated ROS. L67 (DNA Ligase Inhibitor) also activates the Caspase 1-dependent apoptosis pathway in cancer cells, can be used in cancer research.
    L67
  • HY-N0568
    Madecassoside
    Inhibitor 99.86%
    Madecassoside is a pentacyclic triterpene isolated from Centella asiatica and has anti-inflammatory properties. Antioxidant and anti-aging effects. Madecassoside is a pentacyclic triterpene isolated from Centella asiatica. Madecassoside is orally active and has inhibitory properties against inflammation, oxidation, apoptosis and autophagy. Madecassosid inhibits activities of p38 MAPK and NF-kB[5][6], exhibits an anti-apopototic property, activates Nrf2 expression to reduce the neurotoxicity. Madecassoside can be used in endocrine diseases, cardiovascular diseases, skin diseases and other diseases.
    Madecassoside
  • HY-N7015
    Zerumbone
    99.87%
    Zerumbone is an orally active natural cyclic sesquiterpene and can be isolated from Zingiber zerumbet. Zerumbone has anti-proliferative, anti-inflammation, anti-cancer, anti-bacterial and anti-mutagenic activity.
    Zerumbone
  • HY-105930
    Lobaplatin
    Inducer ≥98.0%
    Lobaplatin (D-19466) is a diastereometric mixture of platinum(II) complexe. Lobaplatin arrests cell cycle at G1 and G2/M phase. Lobaplatin induces apoptosis by increasing expressions of caspase and Bax, decreasing expression of Bcl-2. Lobaplatin can be used for research of cancer.
    Lobaplatin
  • HY-N0265
    Asperosaponin VI
    Inhibitor 98.91%
    Asperosaponin VI, A saponin component from Dipsacus asper, induces osteoblast differentiation through BMP‐2/p38 and ERK1/2 pathway. Asperosaponin Ⅵ inhibits apoptosis in hypoxia-induced cardiomyocyte by increasing the Bcl-2/Bax ratio and decreasing active caspase-3 expression, as well as enhancing of p-Akt and p-CREB.
    Asperosaponin VI
  • HY-145765
    JQAD1
    Inducer 98.70%
    JQAD1 is a CRBN-dependent PROTAC that selectively targets EP300 for degradation. JQAD1 suppresses EP300 expression and the H3K27ac modification. JQAD1 induces apoptosis. JQAD1 can be used in research of cancer.
    JQAD1
  • HY-N0213
    Peiminine
    99.94%
    Peiminine is a compound that can be isolated from Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae family). Peiminine can induce apoptosis in human hepatocellular carcinoma HepG2 cells through both extrinsic and intrinsic apoptotic pathways. Peiminine has anti-inflammatory, anticancer, anti-osteoporosis, cardioprotective and other activities in many animal models.
    Peiminine
  • HY-B0257
    Levonorgestrel
    Activator 99.88%
    Levonorgestrel is an orally active inhibitor of progesterone (HY-N0437). Levonorgestrel has anticancer activity and can induce Apoptosis. Levonorgestrel can be used as a contraceptive and in combination with other medications. Levonorgestrel can be used in the study of osteoporosis and uterine leiomyoma.
    Levonorgestrel
  • HY-136241
    OT-82
    Activator 99.84%
    OT-82 is a potent, selective and orally active inhibitor of NAMPT. OT-82 is selectively toxic to cells of hematopoietic origin and induces cell death in a NAD+ dependent manner. OT-82 is a promising antineoplastic agent for the study of hematological malignancies.
    OT-82
  • HY-14521
    Lometrexol
    Inducer 98.03%
    Lometrexol (DDATHF), an antipurine antifolate, can inhibit the activity of glycinamide ribonucleotide formyltransferase (GARFT) but do not induce detectable levels of DNA strand breaks. Lometrexol can further inhibit de novo purine synthesis, causing abnormal cell proliferation and apoptosis, even cell cycle arrest. Lometrexol has anticancer activity. Lometrexol also is a potent human Serine hydroxymethyltransferase1/2 (hSHMT1/2) inhibitor.
    Lometrexol
  • HY-P99111
    Golimumab
    Inhibitor 99.68%
    Golimumab (CNTO-148) is a potent human IgG1 TNFα antagonist monoclonal antibody. Golimumab has anti-inflammation activitity and inhibits IL-6 and IL-1β production. Golimumab acts via targeting and neutralizing TNF to prevent inflammation and destruction of cartilage and bone. Golimumab has the anticancer activity and induces cell apoptosis. Golimumab can be used for rheumatoid arthritis, Crohn's disease and cancer research.
    Golimumab
  • HY-B0347
    Lacidipine
    Modulator 99.79%
    Lacidipine is an orally active and highly selective L-type calcium channel blocker that acts on smooth muscle calcium channels, primarily dilates peripheral arteries, reduces peripheral resistance, and has long-lasting anti-hypertensive activity. Lacidipine protects HKCs from apoptosis induced by ATP depletion and recovery by modulating the caspase-3 pathway. Lacidipine can be used in studies of hypertension, atherosclerosis and acute kidney injury (AKI).
    Lacidipine
  • HY-Y0152
    Cinchonine
    Activator 99.56%
    Cinchonine is a natural compound present in Cinchona bark with antimalarial, antitumor, anti-inflammatory, anti platelet-aggregation and anti-obesity properties. Cinchonine inhibits cells proliferation and autophagy and induces apoptosis through activation of Caspase-3. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells.
    Cinchonine
  • HY-P1008
    Z-VDVAD-FMK
    Inhibitor ≥98.0%
    Z-VDVAD-FMK is a special inhibitor of caspase-2. Z-VDVAD-FMK produces a reduction in Lovastatin-induced apoptosis.
    Z-VDVAD-FMK
  • HY-10805
    Almorexant
    Activator 99.71%
    Almorexant (ACT 078573) is an orally active, potent and competitive dual orexin receptor antagonist, with Kd values of 1.3 nM (OX1) and 0.17 nM (OX2), respectively. Almorexant reversibly blocks signaling of orexin-A and orexin-B peptides. Almorexant totally blocked the intracellular Ca2+ signal pathway. Almorexant stimulates caspase-3 activity in AsPC-1 cells and induces apoptosis.
    Almorexant
  • HY-13755A
    (R)-Sulforaphane
    Inhibitor 99.37%
    (R)-Sulforaphane (L-Sulforaphane) is a orally active, potent inducer of the Keap1/Nrf2/ARE pathway, exhibiting antioxidant and anticancer activities. (R)-Sulforaphane primarily functions by upregulating phase II detoxifying enzymes in cells, aiding in the removal of carcinogens and combating oxidative stress. (R)-Sulforaphane is capable of modulating gene expression, influencing various signaling pathways, including Nrf2, NF-κB, and AP-1. (R)-Sulforaphane can be used in studies of tumor biology, antioxidant defense mechanisms, as well as inflammation and immune responses.
    (R)-Sulforaphane
Cat. No. Product Name / Synonyms Species Source
Cat. No. Product Name / Synonyms Application Reactivity

Upon binding to their cognate ligand, death receptors such as Fas and TRAILR can activate initiator Caspases (Pro-caspase 8 and Pro-caspase 10) through dimerization mediated by adaptor proteins such as FADD and TRADD. Active Caspase 8 and Caspase 10 then cleave and activate the effector Caspase 3, 6 and 7, leading to apoptosis. ROS/DNA damage and ER stress trigger Caspase 2 activation. Active Caspase 2 cleaves and activates Caspase 3 and initiates apoptosis directly. Caspase 2, 8 and 10 can also cleave Bid, stimulate mitochondrial outer membrane permeabilization (MOMP) and initiate the intrinsic apoptotic pathway. Following MOMP, mitochondrial intermembrane space proteins such as Smac and Cytochrome C are released into the cytosol. Cytochrome C interacts with Apaf-1, triggering apoptosome assembly, which activates Caspase 9. Active Caspase 9, in turn, activates Caspase 3, 6 and 7, leading to apoptosis. Mitochondrial release of Smac facilitates apoptosis by blocking the inhibitor of apoptosis (IAP) proteins. 

 

Following the binding of TNF to TNFR1, TNFR1 binds to TRADD, which recruits RIPK1, TRAF2/5 and cIAP1/2 to form TNFR1 signaling complex I. Formation of the complex IIa and complex IIb is initiated either by RIPK1 deubiquitylation mediated by CYLD or by RIPK1 non-ubiquitylation due to depletion of cIAPs. The Pro-caspase 8 homodimer in complex IIa and complex IIb generates active Caspase 8. This active Caspase 8 in the cytosol then carries out cleavage reactions to activate downstream executioner caspases and thus induce classical apoptosis[1][2]

 

Reference:

[1]. Thomas C, et al. Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discovery volume 3, Article number: 17032 (2017).
[2]. Brenner D, et al. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015 Jun;15(6):362-74.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.