1. Cell Cycle/DNA Damage Apoptosis Anti-infection Metabolic Enzyme/Protease NF-κB Immunology/Inflammation
  2. Topoisomerase Apoptosis Antibiotic Bacterial Mitochondrial Metabolism Reactive Oxygen Species
  3. Ciprofloxacin monohydrochloride

Ciprofloxacin monohydrochloride  (Synonyms: Bay-09867 monohydrochloride)

Cat. No.: HY-B0356A Purity: 99.90%
COA Handling Instructions

Ciprofloxacin (Bay-09867) monohydrochloride is a potent, orally active topoisomerase IV inhibitor. Ciprofloxacin monohydrochloride induces mitochondrial DNA and nuclear DNA damage and lead to mitochondrial dysfunction, ROS production. Ciprofloxacin monohydrochloride has anti-proliferative activity and induces apoptosis. Ciprofloxacin monohydrochloride is a fluoroquinolone antibiotic, exhibiting potent antibacterial activity.

For research use only. We do not sell to patients.

Ciprofloxacin monohydrochloride Chemical Structure

Ciprofloxacin monohydrochloride Chemical Structure

CAS No. : 93107-08-5

Size Price Stock Quantity
Free Sample (0.1 - 0.5 mg)   Apply Now  
500 mg USD 30 In-stock
1 g USD 45 In-stock
5 g USD 90 In-stock
10 g   Get quote  
50 g   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 23 publication(s) in Google Scholar

Other Forms of Ciprofloxacin monohydrochloride:

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

Ciprofloxacin (Bay-09867) monohydrochloride is a potent, orally active topoisomerase IV inhibitor. Ciprofloxacin monohydrochloride induces mitochondrial DNA and nuclear DNA damage and lead to mitochondrial dysfunction, ROS production. Ciprofloxacin monohydrochloride has anti-proliferative activity and induces apoptosis. Ciprofloxacin monohydrochloride is a fluoroquinolone antibiotic, exhibiting potent antibacterial activity[1][2][3][4].

IC50 & Target

Quinolone

 

In Vitro

Ciprofloxacin (Bay-09867) monohydrochloride (5-50 μg/mL; 0-24 h; tendon cells) inhibits cell proliferation and causes cell cycle arrest at the G2/M phase[1].
? Ciprofloxacin (Bay-09867) monohydrochloride shows potent activity against Y. pestis and B. anthracis with MIC90 of 0.03 μg/mL and 0.12 μg/mL, respectively[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay[1]

Cell Line: Tendon cells
Concentration: 5, 10, 20 and 50 μg/mL
Incubation Time: 24 hours
Result: Decreased the cellularity of tendon cells.

Cell Cycle Analysis[1]

Cell Line: Tendon cells
Concentration: 50 μg/mL
Incubation Time: 24 hours
Result: Arrested cell cycle at the G2/M phase and inhibited cell division in tendon cells.

Western Blot Analysis[1]

Cell Line: Tendon cells
Concentration: 50 μg/mL
Incubation Time: 0, 6, 12, 17 and 24 hours
Result: Down-regulated the expression of CDK-1 and cyclin B protein and mRNA. Up-regulated the expression of PLK-1 protein.
In Vivo

Ciprofloxacin (Bay-09867) monohydrochloride (30 mg/kg; i.p.; for 24 hours; BALB/c mice) has protection against Y. pestis in murine model of pneumonic plague[3].
? Ciprofloxacin (Bay-09867) monohydrochloride (100 mg/kg; i.g.; daily, for 4 weeks; C57BL/6J mice) accelerates aortic root enlargement and increases the incidence of aortic dissection and rupture by decreases LOX level and increases MMP levels and activity in the aortic wall[4].
? Ciprofloxacin (Bay-09867) monohydrochloride (100 mg/kg; i.g.; daily, for 4 weeks; C57BL/6J mice) induces DNA damage and release of DNA to the cytosol, mitochondrial dysfunction, and activation of cytosolic DNA sensor signaling. Ciprofloxacin lactate increases apoptosis and necroptosis in the aortic wall[4].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model: BALB/c mice[3]
Dosage: 30 mg/kg
Administration: Intraperitoneal injection; for 24 hours
Result: Reduced the lung bacterial load in murine model of pneumonic plague.
Animal Model: C57BL/6J mice[4]
Dosage: 100 mg/kg
Administration: Oral gavage; daily, for 4 weeks
Result: Had aortic destruction that was accompanied by decreased LOX expression and increased MMP expression and activity.
Animal Model: C57BL/6J mice[4]
Dosage: 100 mg/kg
Administration: Oral gavage; daily, for 4 weeks
Result: Caused mitochondrial DNA and nuclear DNA damage, leading to mitochondrial dysfunction and ROS production. Increased apoptosis and necroptosis in the aortic wall.
Clinical Trial
Molecular Weight

367.80

Formula

C17H19ClFN3O3

CAS No.
Appearance

Solid

Color

White to off-white

SMILES

[H]Cl.O=C(C1=CN(C2CC2)C3=C(C=C(F)C(N4CCNCC4)=C3)C1=O)O

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

4°C, sealed storage, away from moisture and light

*The compound is unstable in solutions, freshly prepared is recommended.

Solvent & Solubility
In Vitro: 

H2O : 12.5 mg/mL (33.99 mM; Need ultrasonic)

DMSO : 5 mg/mL (13.59 mM; Need ultrasonic; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 2.7189 mL 13.5943 mL 27.1887 mL
5 mM 0.5438 mL 2.7189 mL 5.4377 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. The compound is unstable in solutions, freshly prepared is recommended.

* Note: If you choose water as the stock solution, please dilute it to the working solution, then filter and sterilize it with a 0.22 μm filter before use.

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 0.5 mg/mL (1.36 mM); Clear solution

    This protocol yields a clear solution of ≥ 0.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (5.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% Corn Oil

    Solubility: ≥ 0.5 mg/mL (1.36 mM); Clear solution

    This protocol yields a clear solution of ≥ 0.5 mg/mL (saturation unknown). If the continuous dosing period exceeds half a month, please choose this protocol carefully.

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (5.0 mg/mL) to 900 μL Corn oil, and mix evenly.

In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Please enter your animal formula composition:
%
DMSO +
+
%
Tween-80 +
%
Saline
Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
Calculation results:
Working solution concentration: mg/mL
Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).

*The compound is unstable in solutions, freshly prepared is recommended.

The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
 If the continuous dosing period exceeds half a month, please choose this protocol carefully.
Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
Purity & Documentation

Purity: 100%

References

Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. The compound is unstable in solutions, freshly prepared is recommended.

Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
DMSO / H2O 1 mM 2.7189 mL 13.5943 mL 27.1887 mL 67.9717 mL
5 mM 0.5438 mL 2.7189 mL 5.4377 mL 13.5943 mL
10 mM 0.2719 mL 1.3594 mL 2.7189 mL 6.7972 mL
H2O 15 mM 0.1813 mL 0.9063 mL 1.8126 mL 4.5314 mL
20 mM 0.1359 mL 0.6797 mL 1.3594 mL 3.3986 mL
25 mM 0.1088 mL 0.5438 mL 1.0875 mL 2.7189 mL
30 mM 0.0906 mL 0.4531 mL 0.9063 mL 2.2657 mL

* Note: If you choose water as the stock solution, please dilute it to the working solution, then filter and sterilize it with a 0.22 μm filter before use.

  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
Ciprofloxacin monohydrochloride
Cat. No.:
HY-B0356A
Quantity:
MCE Japan Authorized Agent: