1. Cancer
  2. Cancer Metabolism and Metastasis

Cancer Metabolism and Metastasis

Metabolic abnormalities are a major feature of cancer, such as increased substance anabolic pathways and aerobic glycolysis. Cancer metabolism shows flexibility and plasticity, which are crucial for the survival and growth of cancer cells. Cancer metastasis is completed in five steps i.e. invasion, dissemination, circulating tumor cells, colonization, and secondary tumor formation. Recently, metabolic adaptation mechanism of cancer metastasis has been proposed to reveal the extensive relationship between cancer metabolism and cancer metastasis. Metastasizing cancer cells selectively and dynamically adapt their metabolism during the complex multistep cascade.

Many nutrients can promote metabolite plasticity during metastasis. For example, lactic acid and pyruvate are the nutrients that cells can directly absorb from the environment; many cancer cells take up glutamine, which contributes to non-essential amino acid as well as nucleotide synthesis through nitrogen or carbon metabolism. Inhibiting the function of key enzymes in metabolic pathways can in turn inhibit the proliferation of cancer cells. For example, lactate dehydrogenase A or B (LDH-A or -B) knockdown can inhibit breast cancer cell motility in vitro. Oncogenic signaling pathways, such as Myc, phosphoinositide 3-kinase (PI3K)/AKT pathway, MAPK/ERK pathway, LKB1/AMPK pathway and Hippo pathways, mediate metabolic gene expression and increase metabolic enzyme activities.

Cancer Metabolism and Metastasis Related Products (38576):

Cat. No. Product Name CAS No. Purity Chemical Structure
  • HY-13259
    MG-132 133407-82-6 99.97%
    MG-132 (Z-Leu-Leu-Leu-al) is a potent proteasome and calpain inhibitor with IC50s of 100 nM and 1.2 μM, respectively. MG-132 effectively blocks the proteolytic activity of the 26S proteasome complex. MG-132, a peptide aldehyde, also is an autophagy activator. MG-132 also induces apoptosis.
    MG-132
  • HY-100579
    Ferrostatin-1 347174-05-4 99.96%
    Ferrostatin-1 (Fer-1), a potent and selective ferroptosis inhibitor, suppresses Erastin-induced ferroptosis in HT-1080 cells (EC50=60 nM). Ferrostatin-1, a synthetic antioxidant, acts via a reductive mechanism to prevent damage to membrane lipids and thereby inhibits cell death. Ferrostatin-1 exhibits antifungal activity.
    Ferrostatin-1
  • HY-10219
    Rapamycin 53123-88-9 99.94%
    Rapamycin (Sirolimus; AY 22989) is a potent and specific mTOR inhibitor with an IC50 of 0.1 nM in HEK293 cells. Rapamycin binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1. Rapamycin is an autophagy activator, an immunosuppressant.
    Rapamycin
  • HY-15763
    Erastin 571203-78-6 99.76%
    Erastin is a ferroptosis inducer. Erastin exhibits the mechanism of ferroptosis induction related to ROS and iron-dependent signaling. Erastin inhibits voltage-dependent anion channels (VDAC2/VDAC3) and accelerates oxidation, leading to the accumulation of endogenous reactive oxygen species. Erastin also disrupts mitochondrial permeability transition pore (mPTP) with anti-tumor activity.
    Erastin
  • HY-17394
    Cisplatin 15663-27-1 99.84%
    Cisplatin (CDDP) is an antineoplastic chemotherapy agent by cross-linking with DNA and causing DNA damage in cancer cells. Cisplatin activates ferroptosis and induces autophagy.
    Cisplatin
  • HY-19312
    3-Methyladenine 5142-23-4 99.91%
    3-Methyladenine (3-MA) is a PI3K inhibitor. 3-Methyladenine is a widely used inhibitor of autophagy via its inhibitory effect on class III PI3K.
    3-Methyladenine
  • HY-17589A
    Chloroquine 54-05-7 99.82%
    Chloroquine is an antimalarial and anti-inflammatory agent widely used to treat malaria and rheumatoid arthritis. Chloroquine is an autophagy and toll-like receptors (TLRs) inhibitor. Chloroquine is highly effective in the control of SARS-CoV-2 (COVID-19) infection in vitro (EC50=1.13 μM).
    Chloroquine
  • HY-Y0320
    Dimethyl sulfoxide 67-68-5 99.99%
    Dimethyl sulfoxide (DMSO) is an aprotic solvent that dissolves polar and non-polar compounds, including water-insoluble therapeutic and toxic agents. Dimethyl sulfoxide (DMSO) has a strong affinity for water and can rapidly penetrate or enhance the penetration of other substances into biological membranes. Dimethyl sulfoxide also has potential free radical scavenging and anticholinesterase effects and may affect coagulation activity. Dimethyl sulfoxide also induces histamine release from mast cells but is thought to have low systemic toxicity. Dimethyl sulfoxide also exhibits antifreeze and antibacterial properties.
    MCE provides Dimethyl sulfoxide that complies with the inspection standards (Ch.P) of Part 4 of the Chinese Pharmacopoeia (2020 Edition).
    Dimethyl sulfoxide
  • HY-15142
    Doxorubicin hydrochloride 25316-40-9 99.90%
    Doxorubicin (Hydroxydaunorubicin) hydrochloride, a cytotoxic anthracycline antibiotic, is an anti-cancer chemotherapy agent. Doxorubicin hydrochloride is a potent human DNA topoisomerase I and topoisomerase II inhibitor with IC50s of 0.8 μM and 2.67 μM, respectively. Doxorubicin hydrochloride reduces basal phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase. Doxorubicin hydrochloride induces apoptosis and autophagy.
    Doxorubicin hydrochloride
  • HY-100558
    Bafilomycin A1 88899-55-2 99.43%
    Bafilomycin A1 (BafA1) is a specific and reversible inhibitor of vacuolar H+-ATPase (V-ATPase) with IC50 values of 4-400 nmol/mg. Bafilomycin A1, a macrolide antibiotic, is also used as an autophagy inhibitor at the late stage. Bafilomycin A1 blocks autophagosome-lysosome fusion and inhibits acidification and protein degradation in lysosomes of cultured cells. Bafilomycin A1 induces apoptosis.
    Bafilomycin A1
  • HY-13757A
    Tamoxifen 10540-29-1 99.92%
    Tamoxifen (ICI 47699) is an orally active, selective estrogen receptor modulator (SERM) which blocks estrogen action in breast cells and can activate estrogen activity in other cells, such as bone, liver, and uterine cells. Tamoxifen is a potent Hsp90 activator and enhances the Hsp90 molecular chaperone ATPase activity. Tamoxifen also potent inhibits infectious EBOV Zaire and Marburg (MARV) with IC50 of 0.1 μM and 1.8 μM, respectively. Tamoxifen activates autophagy and induces apoptosis. Tamoxifen also can induce gene knockout of CreER(T2) transgenic mouse.
    Tamoxifen
  • HY-100218A
    RSL3 1219810-16-8 99.90%
    RSL3 ((1S,3R)-RSL3) is an inhibitor of glutathione peroxidase 4 (GPX4) (ferroptosis activator), reduces the expression of GPX4 protein, and induces ferroptotic death of head and neck cancer cell. RSL3 increases the expression of p62 and Nrf2 and inactivates Keap1 in HN3-rslR cells.
    RSL3
  • HY-10162
    Olaparib 763113-22-0 99.98%
    Olaparib (AZD2281; KU0059436) is a potent and orally active PARP inhibitor with IC50s of 5 and 1 nM for PARP1 and PARP2, respectively. Olaparib is an autophagy and mitophagy activator.
    Olaparib
  • HY-10071
    Y-27632 146986-50-7 99.91%
    Y-27632 is an orally active, ATP-competitive inhibitor of ROCK-I and ROCK-II, with Kis of 220 and 300 nM, respectively. Y-27632 attenuates Doxorubicin-induced apoptosis of human cardiac stem cells. Y-27632 also suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells. Y-27632 primes human induced pluripotent stem cells (hIPSCs) to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation.
    Y-27632
  • HY-14648
    Dexamethasone 50-02-2 99.86%
    Dexamethasone (Hexadecadrol) is a glucocorticoid receptor agonist, apoptosis inducer, and common disease inducer in experimental animals, constructing models of muscle atrophy, hypertension, and depression. Dexamethasone can inhibit the production of inflammatory miRNA-155 exosomes in macrophages and significantly reduce the expression of inflammatory factors in neutrophils and monocytes. Dexamethasone also has potential for use in COVID-19 research.
    Dexamethasone
  • HY-B0015
    Paclitaxel 33069-62-4 99.97%
    Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy.
    Paclitaxel
  • HY-10583
    Y-27632 dihydrochloride 129830-38-2 99.98%
    Y-27632 dihydrochloride is an orally active and ATP-competitive ROCK (Rho-kinase) inhibitor (ROCK-I Ki=220 nM; ROCK-II Ki=300 nM). Y-27632 dihydrochloride shows antiepileptic effects.
    Y-27632 dihydrochloride
  • HY-16658B
    Z-VAD-FMK 161401-82-7 99.78%
    Z-VAD-FMK (Z-VAD(OH)-FMK) is a well-know pan caspase inhibitor, which does not inhibit ubiquitin carboxy-terminal hydrolase L1 (UCHL1) activity even at concentrations as high as 440 μM.
    Z-VAD-FMK
  • HY-10108
    LY294002 154447-36-6 99.95%
    LY294002 is a broad-spectrum inhibitor of PI3K with IC50s of 0.5, 0.57, and 0.97 μM for PI3Kα, PI3Kδ and PI3Kβ, respectively. LY294002 also inhibits CK2 with an IC50 of 98 nM. LY294002 is a competitive DNA-PK inhibitor that binds reversibly to the kinase domain of DNA-PK with an IC50 of 1.4?μM. LY294002 is an apoptosis activator.
    LY294002
  • HY-13966
    2-Deoxy-D-glucose 154-17-6 99.93%
    2-Deoxy-D-glucose is a glucose analog that acts as a competitive inhibitor of glucose metabolism, inhibiting glycolysis via its actions on hexokinase.
    2-Deoxy-D-glucose