1. NF-κB
    Anti-infection
    Metabolic Enzyme/Protease
    Apoptosis
  2. NF-κB
    HIV
    Mitochondrial Metabolism
    Endogenous Metabolite
    Apoptosis
  3. α-Lipoic Acid

α-Lipoic Acid  (Synonyms: Thioctic acid; (±)-α-Lipoic acid; DL-α-Lipoic acid)

Cat. No.: HY-N0492 Purity: ≥98.0%
COA Handling Instructions

α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1.

For research use only. We do not sell to patients.

α-Lipoic Acid Chemical Structure

α-Lipoic Acid Chemical Structure

CAS No. : 1077-28-7

Size Price Stock Quantity
Free Sample (0.1 - 0.5 mg)   Apply Now  
Solution
10 mM * 1 mL in DMSO USD 66 In-stock
Estimated Time of Arrival: December 31
Solid + Solvent
10 mM * 1 mL
ready for reconstitution
USD 66 In-stock
Estimated Time of Arrival: December 31
Solid
500 mg USD 60 In-stock
Estimated Time of Arrival: December 31
1 g   Get quote  
5 g   Get quote  

* Please select Quantity before adding items.

Customer Review

Based on 4 publication(s) in Google Scholar

Other Forms of α-Lipoic Acid:

Top Publications Citing Use of Products

View All NF-κB Isoform Specific Products:

  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review

Description

α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].

IC50 & Target[1][2]

Human Endogenous Metabolite

 

NF-κB

 

Mitochondrial bioenergetics

 

HIV-1

 

In Vitro

The long terminal repeat (LTR) of HIV-1 is the target of cellular transcription factors such as NF-κB, and serves as the promoter-enhancer for the viral genome when integrated in host DNA[1]. α-Lipoic Acid (Alpha-Lipoic acid, ALA), a naturally occurring dithiol compound, plays an essential role in mitochondrial bioenergetics. α-Lipoic Acid reduces lipid accumulation in the liver by regulating the transcriptional factors SREBP-1, FoxO1, and Nrf2, and their downstream lipogenic targets via the activation of the SIRT1/LKB1/AMPK pathway. Treatment of cells with α-Lipoic Acid (250, 500 and 1000 μM) significantly increases the NAD+/NADH ratio in HepG2 cells (P<0.05 or P<0.01). Treatment with α-Lipoic Acid (50, 125, 250 and 500 μM) increases SIRT1 activity in HepG2 cells. α-Lipoic Acid (50, 125, 250, 500 and 1000 μM) increases phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in HepG2 cells in a dose-dependent fashion[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

C57BL/6J mice, divided into four groups, are fed an high-fat diet (HFD) for 24 weeks to induce nonalcoholic fatty liver disease (NAFLD) followed by daily administration of α-Lipoic Acid. Then, the effects of α-Lipoic Acid on hepatic lipid accumulation in long-term HFD-fed mice are assessed. Administration of α-Lipoic Acid (100 mg/kg or 200 mg/kg) markedly reduces visceral fat mass in mice. In addition, α-Lipoic Acid (100 mg/kg or 200 mg/kg) treatment inhibits the appetite and causes a dramatic weight loss (all P<0.05)[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Clinical Trial
Molecular Weight

206.33

Appearance

Solid

Formula

C8H14O2S2

CAS No.
SMILES

O=C(O)CCCCC1SSCC1

Structure Classification
Shipping

Room temperature in continental US; may vary elsewhere.

Storage
Powder -20°C 3 years
4°C 2 years
In solvent -80°C 6 months
-20°C 1 month
Solvent & Solubility
In Vitro: 

DMSO : ≥ 100 mg/mL (484.66 mM)

H2O : 0.1 mg/mL (0.48 mM; Need ultrasonic)

*"≥" means soluble, but saturation unknown.

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 4.8466 mL 24.2330 mL 48.4660 mL
5 mM 0.9693 mL 4.8466 mL 9.6932 mL
10 mM 0.4847 mL 2.4233 mL 4.8466 mL
*Please refer to the solubility information to select the appropriate solvent.
In Vivo:
  • 1.

    Add each solvent one by one:  50% PEG300    50% saline

    Solubility: 10 mg/mL (48.47 mM); Clear solution; Need ultrasonic

  • 2.

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% saline

    Solubility: ≥ 2.5 mg/mL (12.12 mM); Clear solution

  • 3.

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in saline)

    Solubility: ≥ 2.5 mg/mL (12.12 mM); Clear solution

  • 4.

    Add each solvent one by one:  10% DMSO    90% corn oil

    Solubility: ≥ 2.5 mg/mL (12.12 mM); Clear solution

*All of the co-solvents are available by MCE.
Purity & Documentation

Purity: ≥98.0%

References
Cell Assay
[1]

The human hepatocellular carcinoma (HepG2) cell line is cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum at 37°C and 5% CO2. HepG2 cells are treated with AMPK inhibitor (CC, 20 μM, 0.5 h), SIRT1 inhibitor (NA, 10 mM, 12 or 24 h), and AMPK activator (AICAR, 2 mM, 1 h), Palmitate (PA, 125 μM, 12 h) and α-Lipoic Acid (250 μM, 6 or 12 h)[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration
[1]

Mice[1]
Male C57BL/6J mice (6-week-old; body weight: 22-24 g) are allowed ad libitum access to normal diet and water for 2 weeks before dividing into four groups (n=8): normal diet (ND) (10% energy from fat), high-fat diet (HFD) (60% energy from fat) and HFD plus α-Lipoic Acid (100 mg/kg or 200 mg/kg). After 24 weeks of treatment, blood samples are collected after the eyeballs of the mice are extracted for serum preparation by centrifugation at 2000×g for 10 min at 4°C. The liver tissues are harvested in liquid nitrogen and stored at -80°C.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

References
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email address *

Phone number *

 

Organization name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
α-Lipoic Acid
Cat. No.:
HY-N0492
Quantity:
MCE Japan Authorized Agent: