1. Induced Disease Models Products GPCR/G Protein Neuronal Signaling Autophagy Immunology/Inflammation MAPK/ERK Pathway Apoptosis
  2. Nervous System Disease Models Dopamine Receptor Autophagy Mitophagy COX PGE synthase Interleukin Related p38 MAPK Apoptosis Caspase
  3. Parkinson's Disease Models
  4. Oxidopamine hydrobromide

Oxidopamine hydrobromide  (Synonyms: 6-Hydroxydopamine hydrobromide; 6-OHDA hydrobromide)

Cat. No.: HY-B1081A Purity: 99.95%
COA Handling Instructions

Oxidopamine (6-OHDA) hydrobromide is an antagonist of the neurotransmitter dopamine. Oxidopamine hydrobromide is a widely used neurotoxin and selectively destroys dopaminergic neurons. Oxidopamine hydrobromide promotes COX-2 activation, leading to PGE2 synthesis and pro-inflammatory cytokine IL-1β secretion. Oxidopamine hydrobromide can be used for the research of Parkinson’s disease (PD), attention-deficit hyperactivity disorder (ADHD), and Lesch-Nyhan syndrome.

For research use only. We do not sell to patients.

Oxidopamine hydrobromide Chemical Structure

Oxidopamine hydrobromide Chemical Structure

CAS No. : 636-00-0

Size Price Stock Quantity
Free Sample (0.1 - 0.5 mg)   Apply Now  
50 mg USD 66 In-stock
100 mg USD 79 In-stock
200 mg USD 119 In-stock
500 mg USD 238 In-stock
1 g USD 370 In-stock
5 g   Get quote  
10 g   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 12 publication(s) in Google Scholar

Other Forms of Oxidopamine hydrobromide:

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

Oxidopamine (6-OHDA) hydrobromide is an antagonist of the neurotransmitter dopamine. Oxidopamine hydrobromide is a widely used neurotoxin and selectively destroys dopaminergic neurons. Oxidopamine hydrobromide promotes COX-2 activation, leading to PGE2 synthesis and pro-inflammatory cytokine IL-1β secretion. Oxidopamine hydrobromide can be used for the research of Parkinson’s disease (PD), attention-deficit hyperactivity disorder (ADHD), and Lesch-Nyhan syndrome[1][2][3][4].

IC50 & Target

COX-2

 

IL-1β

 

Caspase-3

 

Caspase-8

 

Caspase-9

 

In Vitro

Oxidopamine hydrobromide (0-500 μM, 24 h) decreases the viability of both Neuro-2a cells and SH-SY5Y cells in a concentration-dependent manner[1].
Oxidopamine hydrobromide (75-150 μM, 0-24 h) induces COX-2 expression and nuclear translocation[1].
Oxidopamine hydrobromide (75-150 μM, 0-24 h) causes PGE2 biosynthesis and pro-inflammatory cytokine IL-1β production[1].
Oxidopamine hydrobromide (0-150 μM, 12 h) induces apoptosis and mitochondrial membrane depolarization of pheochromocytoma PC12 cells[3].
Oxidopamine hydrobromide (75 μM, 0-12 h) induces p38 phosphorylation[3].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay[1]

Cell Line: Neuro-2a cells and SH-SY5Y cells
Concentration: 0-500 µM
Incubation Time: 24 or 48 h
Result: Induced neurotoxicity, caused cytotoxicity in both Neuro-2a cells and SH-SY5Y cells in a concentration dependent manner. EC50=111 µM for 24 h incubation and 109 µM for 48 h incubation in the Neuro-2a cells; EC50=118 µM for 24 h incubation and 107 µM for 48 h incubation in the SH-SY5Y cells.

RT-PCR[1]

Cell Line: Neuro-2a cells and SH-SY5Y cells
Concentration: 75 or 150 µM
Incubation Time: 0, 6 or 24 h
Result: Quickly and robustly induced COX-2 in a time-dependent manner. Induced COX-2 activation characterized by expression induction and nuclear translocation. Substantially increased PGE2 in the culture medium by nearly 5-fold in Neuro-2a cells (at 75 µM) and 3-fold in SH-SY5Y cells (at 150 µM). Significantly upregulated the pro-inflammatory cytokine interleukin-1β (IL-1β) within Neuro-2a cells and SH-SY5Y cells.

Apoptosis Analysis[3]

Cell Line: PC12 cells
Concentration: 0, 25, 50, 75, and 150 μM
Incubation Time: 0, 2, 4, 6, 12, and 20 h
Result: Induced apoptosis of PC12 cells. Increased the activities of caspase-3, -8 and -9 in PC12 cells in a time- and concentration-dependent manner. Increased these caspase activities at 2-4 h and reached a maximum at 12 h. Decreased cells with high mitochondrial membrane potential (JC-1 aggregate) in a time- and concentration-dependent manner.

Western Blot Analysis[3]

Cell Line: PC12 cells
Concentration: 75 μM
Incubation Time: 0, 3, 5, 6, 8, 10, and 12 h
Result: Increased the level of p-p38 in a time-dependent manner.
In Vivo

Oxidopamine hydrobromide can be used in animal modeling to construct Parkinson's syndrome models.

Oxidopamine hydrobromide (5 μg/2 μL, unilaterally injected into the right striatum) induces degeneration of dopaminergic neurons in substantia nigra of rats[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

250.09

Appearance

Solid

Formula

C8H12BrNO3

CAS No.
SMILES

OC1=CC(CCN)=C(O)C=C1O.[H]Br

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

4°C, stored under nitrogen

*The compound is unstable in solutions, freshly prepared is recommended.

Solvent & Solubility
In Vitro: 

DMSO : 50 mg/mL (199.93 mM; ultrasonic and warming and heat to 60°C)

H2O : 20 mg/mL (79.97 mM; Need ultrasonic)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 3.9986 mL 19.9928 mL 39.9856 mL
5 mM 0.7997 mL 3.9986 mL 7.9971 mL
10 mM 0.3999 mL 1.9993 mL 3.9986 mL
*Please refer to the solubility information to select the appropriate solvent.
In Vivo:
  • 1.

    Add each solvent one by one:  PBS

    Solubility: 50 mg/mL (199.93 mM); Clear solution; Need ultrasonic

  • 2.

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 2.5 mg/mL (10.00 mM); Clear solution

  • 3.

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 2.08 mg/mL (8.32 mM); Clear solution

*All of the co-solvents are available by MedChemExpress (MCE).
Purity & Documentation

Purity: 99.95%

References
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
Oxidopamine hydrobromide
Cat. No.:
HY-B1081A
Quantity:
MCE Japan Authorized Agent: