1. Metabolic Enzyme/Protease
  2. Liposome
  3. ALC-0159

ALC-0159 

Cat. No.: HY-138300 Purity: ≥98.0%
COA Handling Instructions

ALC-0159, a polyethylene glycol (PEG) lipid conjugate, could be used as vaccine excipient.

For research use only. We do not sell to patients.

ALC-0159 Chemical Structure

ALC-0159 Chemical Structure

CAS No. : 1849616-42-7

Size Price Stock Quantity
Free Sample (0.1 - 0.5 mg)   Apply Now  
5 mg USD 70 In-stock
10 mg USD 110 In-stock
25 mg USD 190 In-stock
50 mg USD 340 In-stock
100 mg USD 550 In-stock
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 4 publication(s) in Google Scholar

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

ALC-0159, a polyethylene glycol (PEG) lipid conjugate, could be used as vaccine excipient[1].

In Vitro

Preparation of Lipid Nanoparticles

Here we provide lipid molar ratios for LNPs in FDA-approved BNT162b2 (a COVID-19 mRNA vaccine). The molar ratio of lipids in this formulation is ALC-0315 : DSPC : Cholesterol : ALC-0159 = 46.3 : 9.4 : 42.7 : 1.6, and RNA to lipid weight ratio is 0.05 (wt/wt) [1] .

A. Lipid Mixture Preparation

1. Dissolve lipids in ethanol and prepare 10 mg/m stock solutions. The lipid stock solutions can be stored at −20°C for later use.

Note 1: The ionizable lipid is usually a liquid. Due to the viscosity, it should always be weighed rather than relying on the autopipette volume.

Note 2: Cholesterol in solution should be kept warm (>37℃) to maintain fluidity. Transfer the cholesterol solution promptly to avoid cooling.

2. Prepare the lipid mixture solution as described. For each mL of lipid mixture add the following: 560 µL of 10mg/mL ALC-0315 (HY-138170), 261 µL of 10mg/mL Cholesterol (HY-N0322), 117 µL of 10mg/mL DSPC (HY-W040193), and 62 µL of ALC-0159 (HY-138300). Mix the solutions thoroµghly to achieve a clear solution. This mixture contains 10 mg of total lipid.

Note 3: The choice of lipids and ratios may be changed as desired and this will affect the LNP properties (size, polydispersity, and efficacy) and the amount of mRNA required.

B. mRNA Preparation

1. Prepare a 166.7 µg/mL mRNA solution with 100 mM pH 5 sodium acetate buffer.

Note 4: The lipid:mRNA weight ratio influences the encapsulation efficiency. Other weight ratios may be prepared as alternative formulations and should be adjusted accordingly by user.

C. Mixing

There are three commonly used methods to achieve rapid mixing of the solutions: the pipette mixing method, the vortex mixing method, and the microfluidic mixing method. All these mixing methods can be used for various applications.

It is important to note that pipette mixing method and vortex mixing method may yield more heterogeneous LNPs with lower encapsulation efficiencies and is prone to variability. Microfluidic devices enable rapid mixing in a highly controllable, reproducible manner that achieves homogeneous LNPs and high encapsulation efficiency. Within these devices, the ethanolic lipid mixture and aqueous solution are rapidly combined in individual streams. LNPs are formed as the two streams mix and are then collected into a single collection tube.

1. Pipette Mixing Method:

1.1. Pipette 3 mL of the mRNA solution and quickly add it into 1 mL of the lipid mixture solution (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.) Pipette up and down rapidly for 20–30 seconds.

1.2. Incubate the resulting solution at room temperature for up to 15 minutes.

1.3. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

2. Vortex Mixing Method:

1.1. Vortex 3 mL of mRNA solution at a moderate speed on the vortex mixer. Then, Quickly add 1 mL of the lipid mixture solution into the vortexing solution (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.). Continue vortexing the resulting dispersion for another 20–30 seconds.

1.2. Incubate the resulting solution at room temperature for up to 15 minutes.

1.3. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

3. Microfluidic Mixing Method:

1.1 The 3 mL of mRNA buffer solution and 1 mL of the lipid mixture solution were mixed at a total flow rate of 12  mL/min in a microfluidic device (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.).

Note 5: Parameters such as the flow rate ratio and total flow rate can be altered to fine-tune LNPs.

1.2. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

Reference

1. Curr Issues Mol Biol. 2022 Oct 19;44(10):5013-5027.

2. Curr Protoc. 2023;3(9):e898.

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Formula

(C2H4O)nC31H63NO2

CAS No.
Appearance

Solid

Color

White to off-white

SMILES

CCCCCCCCCCCCCCN(C(COCCOC)=O)CCCCCCCCCCCCCC.[n]

Shipping

Room temperature in continental US; may vary elsewhere.

Storage
Powder -20°C 3 years
4°C 2 years
In solvent -80°C 6 months
-20°C 1 month
Solvent & Solubility
In Vitro: 

DMSO : 100 mg/mL (Need ultrasonic)

Ethanol : ≥ 50 mg/mL

*"≥" means soluble, but saturation unknown.

In Vivo:
  • 1.

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 2.5 mg/mL (Infinity mM); Clear solution

  • 2.

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 2.5 mg/mL (Infinity mM); Clear solution

  • 3.

    Add each solvent one by one:  10% DMSO    90% Corn Oil

    Solubility: ≥ 2.5 mg/mL (Infinity mM); Clear solution

*All of the co-solvents are available by MedChemExpress (MCE).
Purity & Documentation

Purity: ≥98.0%

References
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.

ALC-0159 Related Classifications

Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
ALC-0159
Cat. No.:
HY-138300
Quantity:
MCE Japan Authorized Agent: