1. Immunology/Inflammation
    NF-κB
    TGF-beta/Smad
    Stem Cell/Wnt
    Metabolic Enzyme/Protease
  2. NOD-like Receptor (NLR)
    Reactive Oxygen Species
    TGF-beta/Smad
    Endogenous Metabolite
  3. Trimethylamine N-oxide dihydrate

Trimethylamine N-oxide dihydrate 

Cat. No.: HY-108915 Purity: ≥98.0%
Handling Instructions

Trimethylamine N-oxide dihydrate is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients. Trimethylamine N-oxide dihydrate induces inflammation by activating the ROS/NLRP3 inflammasome. Trimethylamine N-oxide dihydrate also accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis by activating the TGF-β/smad2 signaling pathway.

For research use only. We do not sell to patients.

Trimethylamine N-oxide dihydrate Chemical Structure

Trimethylamine N-oxide dihydrate Chemical Structure

CAS No. : 62637-93-8

Size Price Stock Quantity
Free Sample (0.5-1 mg)   Apply Now  
Solution
10 mM * 1 mL in Water USD 55 In-stock
Estimated Time of Arrival: December 31
Solid + Solvent
10 mM * 1 mL
ready for reconstitution
USD 55 In-stock
Estimated Time of Arrival: December 31
Solid
1 g USD 50 In-stock
Estimated Time of Arrival: December 31
5 g   Get quote  
10 g   Get quote  

* Please select Quantity before adding items.

Customer Review

Based on 1 publication(s) in Google Scholar

Other Forms of Trimethylamine N-oxide dihydrate:

Top Publications Citing Use of Products

1 Publications Citing Use of MCE Trimethylamine N-oxide dihydrate

  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

Trimethylamine N-oxide dihydrate is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients. Trimethylamine N-oxide dihydrate induces inflammation by activating the ROS/NLRP3 inflammasome. Trimethylamine N-oxide dihydrate also accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis by activating the TGF-β/smad2 signaling pathway[1][2][3].

IC50 & Target

Human Endogenous Metabolite

 

Microbial Metabolite

 

In Vitro

The size and migration of fibroblasts are increased after Trimethylamine N-oxide (TMAO) dihydrate treatment compared with non-treated fibroblasts in vitro. Trimethylamine N-oxide dihydrate increases TGF-β receptor I expression, which promotes the phosphorylation of Smad2 and up-regulates the expression of α-SMA and collagen I. The ubiquitination of TGF-βRI is decreased in neonatal mouse fibroblasts after Trimethylamine N-oxide dihydrate treatment. Trimethylamine N-oxide dihydrate also inhibits the expression of smurf2[2].
Trimethylamine N-oxide is frequently found in the tissues of a variety of marine organisms that protects against the adverse effects of temperature, salinity, high urea and hydrostatic pressure[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Trimethylamine N-oxide (TMAO) dihydrate contributes to cardiovascular diseases by promoting inflammatory responses. C57BL/6 mice are fed a normal diet, high-choline diet and/or 3-dimethyl-1-butanol (DMB) diet. The levels of Trimethylamine N-oxide dihydrate and choline are increased in choline-fed mice. Left ventricular hypertrophy, pulmonary congestion, and diastolic dysfunction are markedly exacerbated in heart failure with preserved ejection fraction (HFpEF) mice fed high-choline diets compared with mice fed the control diet. Myocardial fibrosis and inflammation were markedly increased in HFpEF mice fed high-choline diets compared with animals fed the control diet[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

111.14

Formula

C3H13NO3

CAS No.
SMILES

C[N+](C)([O-])C.[2H2O]

Shipping

Room temperature in continental US; may vary elsewhere.

Storage
Powder -20°C 3 years
4°C 2 years
In solvent -80°C 6 months
-20°C 1 month
Solvent & Solubility
In Vitro: 

H2O : 100 mg/mL (899.77 mM; Need ultrasonic)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 8.9977 mL 44.9883 mL 89.9766 mL
5 mM 1.7995 mL 8.9977 mL 17.9953 mL
10 mM 0.8998 mL 4.4988 mL 8.9977 mL
*Please refer to the solubility information to select the appropriate solvent.
In Vivo:
  • 1.

    Add each solvent one by one:  PBS

    Solubility: 120 mg/mL (1079.72 mM); Clear solution; Need ultrasonic

  • 2.

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% saline

    Solubility: ≥ 2.5 mg/mL (22.49 mM); Clear solution

  • 3.

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in saline)

    Solubility: ≥ 2.5 mg/mL (22.49 mM); Clear solution

  • 4.

    Add each solvent one by one:  10% DMSO    90% corn oil

    Solubility: ≥ 2.5 mg/mL (22.49 mM); Clear solution

*All of the co-solvents are available by MCE.
Purity & Documentation
References
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email address *

Phone number *

 

Organization name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
Trimethylamine N-oxide dihydrate
Cat. No.:
HY-108915
Quantity:
MCE Japan Authorized Agent: